本系列代码基于golang1.19
1. chan的结构
一个channel长这样:
type hchan struct {
qcount uint // total data in the queue
dataqsiz uint // size of the circular queue
buf unsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16 // chan中元素大小
closed uint32 // 是否关闭
elemtype *_type // element type
sendx uint // send index
recvx uint // receive index
recvq waitq // list of recv waiters
sendq waitq // list of send waiters
lock mutex
}
channel的字段中,主要可以分为三部分:
第一部分是标识channel自身的一些状态和性质,如hchan.closed
标识chan是否关闭,hchan.elemsize
标识chan中元素的大小、hchan.elemtype
标识chan中元素类型;
第二部分是标识底层循环数组的状态的字段,如hchan.qcount
标识当前数组中元素数量、hchan.dataqsiz
标识循环数组的大小、hchan.buf
是指向底层数组的指针、hchan.sendx
标识待发送元素的下标、hchan.recvx
标识待接收元素的下标;
第三部分是存储正等待当前chan的goroutine,如hchan.recvq
存储等待接收的goroutine,hchan.sendq
存储等待发送的gotoutine
最后是一个锁,保证了并发安全。
1.1 如何构造一个chan
通过汇编可以看到,在构造chan时,调用的是runtime.makechan
函数,函数如下:
type chantype struct {
typ _type
elem *_type
dir uintptr
}
func makechan(t *chantype, size int) *hchan {
elem := t.elem
// ...
// 省略部分检查代码
mem, overflow := math.MulUintptr(elem.size, uintptr(size))
if overflow || mem > maxAlloc-hchanSize || size < 0 {
panic(plainError("makechan: size out of range"))
}
// Hchan does not contain pointers interesting for GC when elements stored in buf do not contain pointers.
// buf points into the same allocation, elemtype is persistent.
// SudoG's are referenced from their owning thread so they can't be collected.
// TODO(dvyukov,rlh): Rethink when collector can move allocated objects.
var c *hchan
switch {
case mem == 0:
// Queue or element size is zero.
c = (*hchan)(mallocgc(hchanSize, nil, true))
// Race detector uses this location for synchronization.
c.buf = c.raceaddr()
case elem.ptrdata == 0:
// Elements do not contain pointers.
// Allocate hchan and buf in one call.
c = (*hchan)(mallocgc(hchanSize+mem, nil, true))
c.buf = add(unsafe.Pointer(c), hchanSize)
default:
// Elements contain pointers.
c = new(hchan)
c.buf = mallocgc(mem, elem, true)
}
c.elemsize = uint16(elem.size)
c.elemtype = elem
c.dataqsiz = uint(size)
lockInit(&c.lock, lockRankHchan)
if debugChan {
print("makechan: chan=", c, "; elemsize=", elem.size, "; dataqsiz=", size, "\n")
}
return c
}
首先对mem
进行了计算,mem
是chan中元素所占的空间
runtime.makechan
函数中,受先是一些检查,然后根据chan的长度和elem的类型,会有不同的构造策略:
- 如果是构造一个无缓冲chan,即参数size为0,那么默认分配
hchanSize
=96字节空间并强制转换为*hchan类型,96字节是一个hchan的大小。然后 - 如果chan的elem不包含指针,则分配
hchanSize+mem
空间给chan,并将hchanSize
之后的所有空间分配给hchan.buf
。 - 如果chan的elel包含指针,那么直接new一个chan,并为
hchan.buf
分配meme
大小的空间
最后将hchan.elemsize
、hchan.elemtype
、hchan.dataqsiz
进行赋值。
返回一个hchan
的指针,这保证了我们在对channel进行传递时不会进行复制。
2. chan的发送与接收
2.1 chan的发送
chan发送时调用了runtime.chansend1
:
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if c == nil { // 如果chan为nil
if !block { // 如果不可阻塞
return false // 发送失败
}
gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2) // 可阻塞,goroutine挂起
throw("unreachable")
}
// 省略部分代码
if !block && c.closed == 0 && full(c) { // 不可阻塞,chan未关闭且已满,则发送失败
return false
}
var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
}
lock(&c.lock) // 加锁,并发安全
if c.closed != 0 { // 如果chan已经被关闭了
unlock(&c.lock) // 解锁
panic(plainError("send on closed channel")) // 向已关闭的chan发送会panic
}
// 如果接收队列中存在goroutine,则不经过hchan.buf,而直接复制到接收端缓冲区
if sg := c.recvq.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
}
// chan还没满
if c.qcount < c.dataqsiz {
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx) // 计算存放元素的内存地址
if raceenabled {
racenotify(c, c.sendx, nil)
}
typedmemmove(c.elemtype, qp, ep) // 将元素复制到buf
c.sendx++ // 待发送下标+1
if c.sendx == c.dataqsiz { // 循环数组
c.sendx = 0
}
c.qcount++ // 总元素数量+1
unlock(&c.lock) // 解锁
return true // 发送成功
}
// chan满了
if !block { // chan满了,且要求不可阻塞,则直接失败
unlock(&c.lock)
return false
}
// 可以阻塞
// 获取当前goroutine指针
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
mysg.elem = ep
mysg.waitlink = nil
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.waiting = mysg
gp.param = nil
c.sendq.enqueue(mysg) // 当前goroutine进入chan的待发送队列
atomic.Store8(&gp.parkingOnChan, 1)
// 挂起当前goroutine
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanSend, traceEvGoBlockSend, 2)
KeepAlive(ep)
// 当前goroutine被唤醒了
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
gp.activeStackChans = false
closed := !mysg.success
gp.param = nil
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
mysg.c = nil
releaseSudog(mysg)
if closed { // 被唤醒后发现chan关闭了
if c.closed == 0 {
throw("chansend: spurious wakeup")
}
panic(plainError("send on closed channel"))
}
return true
}
上述代码的主要逻辑是:
- 检查会发送失败的情况
- 加锁
- 再次检查会发送失败的情况,失败则解锁返回失败
- 如果有goroutine在等着接收,直接复制给它,解锁返回成功
- chan的buf没满,复制到buf中,解锁返回成功
- 如果chan的buf满了
- 不可以阻塞,解锁返回失败
- 可以阻塞,让goroutine进入等待队列并挂起,等待唤醒
唤醒后,不会再进行发送或复制等,因为一个goroutine如果是从等待队列被唤醒,则是直接从发送goroutine将消息复制过来,然后才唤醒,因此可以直接结束。
如果在发送时发现有等待接收的goroutine,会调用runtime.send
将元素复制给等待的goroutine,runtime.send
如下:
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
if raceenabled {
if c.dataqsiz == 0 {
racesync(c, sg)
} else {
// Pretend we go through the buffer, even though
// we copy directly. Note that we need to increment
// the head/tail locations only when raceenabled.
racenotify(c, c.recvx, nil)
racenotify(c, c.recvx, sg)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
}
}
// sg.elem 指向接收到的值存放的位置,如 val <- ch,指的就是 &val
if sg.elem != nil {
sendDirect(c.elemtype, sg, ep)
sg.elem = nil
}
gp := sg.g
unlockf()
gp.param = unsafe.Pointer(sg)
sg.success = true
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, skip+1)
}
2.2 chan的接收
chan接收时调用的函数为runtime.chanrecv
:
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
if debugChan {
print("chanrecv: chan=", c, "\n")
}
if c == nil { // chan为nil
if !block { // 且不可阻塞
return // 直接返回失败
}
gopark(nil, nil, waitReasonChanReceiveNilChan, traceEvGoStop, 2) // 可阻塞,gotoutine挂起
throw("unreachable")
}
// Fast path: check for failed non-blocking operation without acquiring the lock.
if !block && empty(c) { // 不可阻塞且chan为空
if atomic.Load(&c.closed) == 0 { // chan没关闭
return
}
// The channel is irreversibly closed. Re-check whether the channel has any pending data
// to receive, which could have arrived between the empty and closed checks above.
// Sequential consistency is also required here, when racing with such a send.
if empty(c) { // chan被关闭了,但其中可能还有未取出的值
// The channel is irreversibly closed and empty.
if raceenabled {
raceacquire(c.raceaddr())
}
if ep != nil {
typedmemclr(c.elemtype, ep)
}
return true, false
}
}
var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
}
lock(&c.lock) // 上锁
if c.closed != 0 { // 再次检查chan是否被关闭
if c.qcount == 0 {
if raceenabled {
raceacquire(c.raceaddr())
}
unlock(&c.lock)
if ep != nil {
typedmemclr(c.elemtype, ep)
}
return true, false
}
// The channel has been closed, but the channel's buffer have data.
} else {
// Just found waiting sender with not closed.
if sg := c.sendq.dequeue(); sg != nil { // 有个chan等着发
// Found a waiting sender. If buffer is size 0, receive value
// directly from sender. Otherwise, receive from head of queue
// and add sender's value to the tail of the queue (both map to
// the same buffer slot because the queue is full).
recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true, true
}
}
if c.qcount > 0 { // 当前chan中有值
// Receive directly from queue
qp := chanbuf(c, c.recvx)
if raceenabled {
racenotify(c, c.recvx, nil)
}
if ep != nil {
typedmemmove(c.elemtype, ep, qp) // 将消息复制给接收者
}
typedmemclr(c.elemtype, qp) // 清理发送者内存空间
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.qcount--
unlock(&c.lock)
return true, true
}
if !block { // 当前chan中没有值,又不能阻塞,只好失败
unlock(&c.lock)
return false, false
}
// 可以阻塞,先坐等一会
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
gp.waiting = mysg
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.param = nil
c.recvq.enqueue(mysg)
atomic.Store8(&gp.parkingOnChan, 1)
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanReceive, traceEvGoBlockRecv, 2)
// 被唤醒了
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
gp.activeStackChans = false
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
success := mysg.success
gp.param = nil
mysg.c = nil
releaseSudog(mysg)
return true, success
}
总体来看,和发送的过程很相似,主要是检查chan是否关闭,是否可阻塞,是否有发送者等待,chan中是否有值,然后做出响应的处理。
在使用chan进行接收时,有时可以使用ok来标识是否真的从chan中接收到了值,go底层通过不同的函数做到这一点:
// a := <-chan
func chanrecv1(c *hchan, elem unsafe.Pointer) {
chanrecv(c, elem, true)
}
// a, ok := <-chan
func chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) {
_, received = chanrecv(c, elem, true)
return
}
3. chan的关闭
关闭chan时,调用的是runtime.closechan
:
func closechan(c *hchan) {
if c == nil { // 不能关闭一个nilchan
panic(plainError("close of nil channel"))
}
lock(&c.lock)
if c.closed != 0 { // 不能重复关闭chan
unlock(&c.lock)
panic(plainError("close of closed channel"))
}
if raceenabled {
callerpc := getcallerpc()
racewritepc(c.raceaddr(), callerpc, abi.FuncPCABIInternal(closechan))
racerelease(c.raceaddr())
}
c.closed = 1 // 设置chan状态为关闭
var glist gList
// 处理所有等待读取的goroutine
for {
sg := c.recvq.dequeue()
if sg == nil { // 当recvq中没有goroutine时跳出
break
}
if sg.elem != nil { // sg.elem不为空说明接受者未忽略接收值
typedmemclr(c.elemtype, sg.elem) // 给等待读取的设置零值
sg.elem = nil
}
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
// 把goroutine取出来
gp := sg.g
gp.param = unsafe.Pointer(sg)
sg.success = false
if raceenabled {
raceacquireg(gp, c.raceaddr())
}
glist.push(gp) // 将goroutine推入glist
}
// 所有想要发送的goroutine,对不起,你们panic吧
for {
sg := c.sendq.dequeue()
if sg == nil {
break
}
sg.elem = nil
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
gp := sg.g
gp.param = unsafe.Pointer(sg)
sg.success = false
if raceenabled {
raceacquireg(gp, c.raceaddr())
}
glist.push(gp) // 将goroutine推入glist
}
unlock(&c.lock)
// 遍历gList,把其中的所有goroutine唤醒
for !glist.empty() {
gp := glist.pop()
gp.schedlink = 0
goready(gp, 3)
}
}
对于chan的关闭,主要有两点:
- 对于待接收的chan,如果chan缓冲区中没有值了,则返回其一个零值,如果缓冲区还有值,则把值交给它
- 对于待发送的chan,对不起了宝贝们,你们都给爷爷panic吧
References
https://golang.design/go-questions/channel/struct/
https://codeburst.io/diving-deep-into-the-golang-channels-549fd4ed21a8